INFORMATION

Product No. : Q33636E41002700

Model :

SG-636PCE

SPEC. No. : A05-874-1A

DATE :

Jan. 18. 2006

EPSON TOYOCOM CORPORATION

8548 Naka-minowa Minowa-machi Kamiina-gun Nagano-ken 399-4696 Japan

INTRODUCTION

- 1. The contents is subject to change without notice. Please exchange the specification sheets regarding the product's warranty.
- 2. This sheet is not intended to guarantee or provide an approval of implementation of industrial patents.
- 3. We have prepared this sheet as carefully as possible. If you find it incomplete or unsatisfactory in any respect, We would welcome your comments.

This product is not authorized for use as critical components in life support device or systems.

Contents

Item No.	Item	Page
[1]	Absolute maximum ratings	2
[2]	Operating range	2
[3]	Frequency characteristics	2
[4]	Electrical characteristics	3
[5]	Function	4
[6]	Test circuit	4
[7]	Timing chart	5
[8]	Environmental and mechanical characteristics	6
[9]	Dimensions and marking layout	7
[10]	Notes	8
[11]	Recommendable patterning	9

		-0-		
Parameter	Symbol	Value	Unit	Note
Supply voltage	VDD-GND	-0.5 to +7.0	V	
Storage temperature *	Tstg	-55 to +100	°C	Stored as bare product after unpacking.
Output current	Iout	30 or under	mA	
Input voltage	VIN	-0.5 to VDD+0.5	V	

[1] Absolute maximum ratings

* Concerning the frequency change, please refer page 7 [8] Environmental and mechanical characteristics.

[2] Operating range

		Value				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Supply voltage	VDD	3.0	3.3	3.6	V	
Supply voltage	GND	0.0		0.0	V	
Operating temperature	TOPR	-20		+70	°C	
Input voltage	VIN	GND		VDD	V	
Output load	CL			30	pF	

• Start up time(0 %VDD \rightarrow 90 %VDD) of power source should be more than 150 µs.

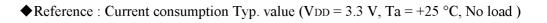
[3] Frequency characteristics

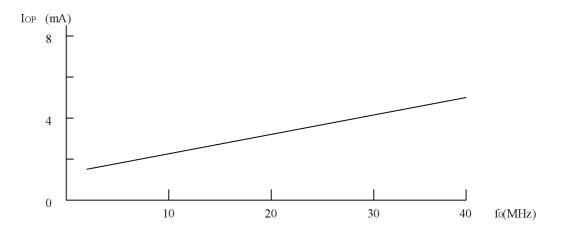
Output frequency 5 MHz

		(VDD=3)	$5 \text{ v} \pm 0.3 \text{ v}$, GND- 0.0 v , Load CL $\leq 30 \text{ pF}$)
Parameter	Symbol	Value $[1 \times 10^{-6}]$	Note
Frequency stability *	Δ f/fo	C : ± 100	Ta=-20 °C to +70 °C
Aging	fa	± 5	Ta=+25 °C, VDD=3.3 V
Aging	fa	(Typ3)	First year

 $(V_{DD}=3.3 V \pm 0.3 V, GND=0.0 V, Load CL \le 30 pF)$

* This includes initial frequency tolerance, temperature characteristics, input voltage characteristics, and load characteristics, but excludes aging.

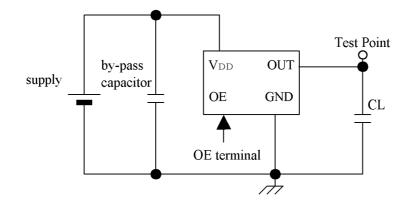

		Va	lue		
Parameter	Symbol	Min.	Max.	Unit	Note
Start up time	tosc		4.0	ms	Time point of $VDD 3.0 V$ is consider as t=0
Current consumption	IOP		9.0	mA	No load (fo=40 MHz)
Disable current	IOE		5.0	mA	OE=GND(fo=40 MHz)
Output rise time *	t TLH		5.0	ns	$20 \% V_{DD} \rightarrow 80 \% V_{DD}$ Level
Output fall time *	t THL		5.0	ns	$80 \% V_{DD} \rightarrow 20 \% V_{DD}$ Level
Output duty *	tw/t	45	55	%	50 %V _{DD} Level
High level output voltage	Voh	VDD-0.4		V	$I_{OH} = -4 \text{ mA}$
Low level output voltage	Vol		0.4	V	$I_{OL} = 4 mA$
High level input voltage	VIH	0.8 Vdd	VDD	V	OE terminal
Low level input voltage	VIL	GND	0.2 Vdd	V	OE terminal
Input current	IIH		1.0	μA	$OE = V_{DD}$
	IIL	-1.0		μΑ	OE = GND
Output disable time *	t PXZ		100	ns	OE terminal High \rightarrow Low
Output enable time *	t PZX		100	ns	OE terminal Low \rightarrow High


[4] Electrical characteristics

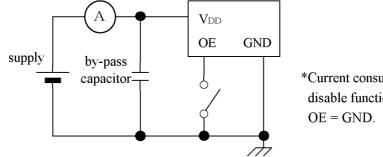
(Please see page 2 [2] Operating range VDD=3.3 V±0.3 V,GND=0.0 V)

[6] Test circuit

* [7] Timing chart



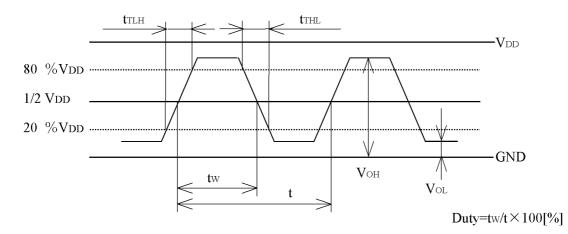
[5] Test circuit


OE function	Output status
High or Open	Specified frequency is output
Low	Output becomes high impedance

[6] Test circuit

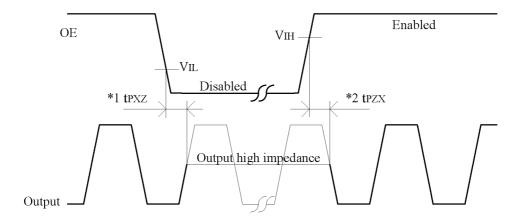
1) C-MOS load : $CL \leq 30 \text{ pF}$

2) Current consumption


*Current consumption under the disable function should be OE = GND.

3) Condition

- (1) Oscilloscope
 - Band width should be minimum 5 times higher (wider) than measurement frequency.
 - Probe earth should be placed closely from test point and lead length should be as short as possible.
 - * Recommendable to use miniature socket. (Don't use earth lead.)
- (2) 'CL' includes probe capacitance.
- (3) By-pass capacitor (0.01 μ F to 0.1 μ F) is placed closely between VDD and GND.
- (4) Use the current meter whose internal impedance value is small.
- (5) Power supply
 - Start up time (0 %VDD \rightarrow 90 %VDD) of power source should be more than 150 µs.
 - Impedance of power supply should be as lowest as possible.


[7] Timing chart

1) C-MOS load (C-MOS Level)

2) OE function and timing

OE function	Osc. circuit	Output status				
High or Open	Enable	Specified frequency is output : Enable				
Low Disable		Output becomes high impedance : Disable				

*1 The time taken from OE=VIL to output = Disable (high impedance)

*2 The time taken from OE=VIH to output = Enable

[8] Environmental and mechanical characteristics

		Valı	ie *1	Test Conditions		
No.	b. Item Δf [1 ×		Electrical characteristics			
1	High temperature storage	*3 ±80		+100 °C × 1 000 h		
2	Low temperature storage	*3 ±10		-55 °C × 1 000 h		
3	High temperature bias	*3 ±20		$+70 \ ^{\circ}\text{C} \times 5.5 \ \text{V} \times 1 \ 000 \ \text{h}$		
4	Low temperature bias	*3 ±10		-20 °C × 5.5 V × 1 000 h		
5	Temperature humidity bias	*3 ±50		+85 °C × 85 %RH × 5.5 V × 1 000 h		
6	Temperature cycle	*3 ±20		$\begin{array}{c} -55 \ ^{\circ}\text{C} \leftrightarrow +100 \ ^{\circ}\text{C} \\ 30 \ \text{min. at each temperature } 100 \ \text{cycles} \end{array}$		
7	Resistance to soldering heat for termination	±10		 a) Infrared - reflow or convention reflow soldering furnace (2 time) b) Dip termination into solder bath at +260 °C ± 5 °C for 10 s , 2 times 		
8	Drop	± 20	Satisfy Item [4] after test.	Free drop from 750 mm height on a hard wooden board for 3 times (Board thickness is more than 30 mm)		
9	Vibration	± 10		10 Hz to 55 Hz amplitude 0.75 mm 55 Hz to 500 Hz acceleration 98 m/s ² 10 Hz \rightarrow 500 Hz \rightarrow 10 Hz 15 min./cycle 6 h (2 hours, 3 directions)		
10	Pull - off	No peeling-off at a solder part		10 N press for 10 s \pm 1 s Ref. EIAJ ED-4702		
11	Solderability	Termination r covered with		Dip termination into solder bath at $+235 \text{ °C} \pm 5 \text{ °C}$ for 5 s. (Using Rosin Flux)		
12	Solvent resistance		ng shall be ible	Ref. JIS C 0052 or IEC 60068-2-45		

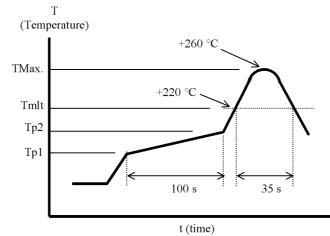
(The company evaluation condition We evaluate it by the following examination item and examination condition.)

< Notes >

*1 Each test done independently.

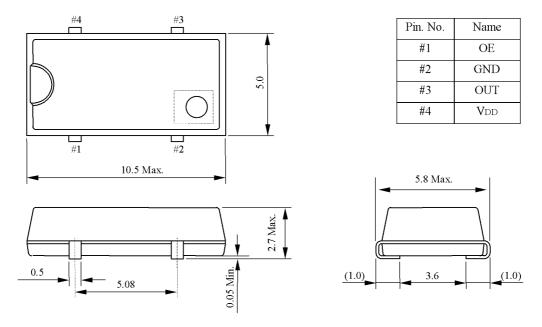
*2 Measuring 2 h to 24 h later leaving in room temperature after each test.

*3 Pre conditionings.


1.+125 °C × 24 h to +85 °C × 85 % × 48 h \rightarrow reflow 2times.

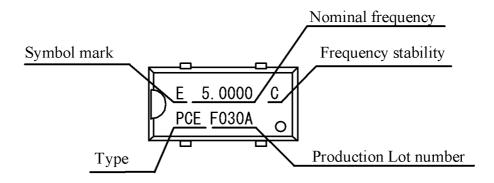
2. Initial value shall be after 24 h at room temperature.

Infrared-reflow soldering furnace


1.Pre heating temperature : Tp1 ~ Tp2 = +170 °C

2.Peak temperature must not exceed +260 $\,^{\circ}$ C and the duration of over +220 $\,^{\circ}$ C should be 35 s.

[9] Dimensions and marking layout


1) Dimensions

Terminal treatment : Pb-free solder plating Unit : mm

* _____ : The cylinder of the liquid crystal oscillator can be seen in this area (back and front), but it has no affect on the performance of the device.

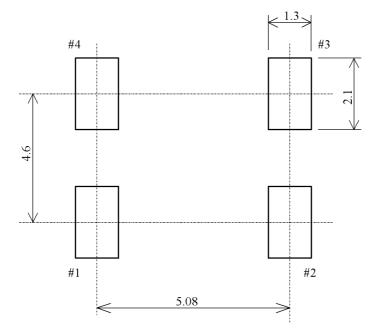
2) Marking layout

- The above marking layout shows only marking contents and their approximate position and it is not for font, size and exact position.
- Output frequency shall indicate by 4 digits for below decimal point, if the value of frequency over 4 digits, the least significant digits will be omitted.

[10] Notes

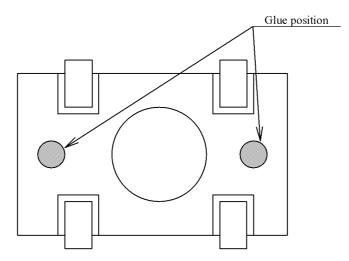
- 1) This device is made with C-MOS IC. Please take precautions to prevent damage due to electrical static discharge.
- 2) We recommend placing a 0.01 to 0.1 μ F capacitor closely between VDD and GND to obtain stable operation and protest against power line ripple.
- 3) VDD and GND pattern shall be as big as possible so that high frequency impedance shall be small.

4) We can not recommend to put filtering element into power line so as to reduce noise. Oscillator might be


unstable oscillation because high frequency impedance of power line become higher. When use filtering element, please verify electrical construction and or element's spec.

- 5) Power ripple : 200 mV P-P max.
- 6) As a long output line may cause irregular output, please take care to design output line is as short as possible, and also keeps high level signal source away from this device.
- 7) Another high level signal line may cause the operation error, so please do not place high level signal line close to this device.
- 8) This device contains a crystal resonator, so please don't expose not give too much shock or vibration. We recommend to storage device under normal temperature and humidity to keep the specification.
- 9) An automatic insertion is available, however, the internal crystal resonator might be damaged in case that too much shock or vibration is applied by machine condition. Be sure to check your machine condition in advance.
- 10) Ultrasonic cleaning can be applicable on the SG-636PCE, however, since the oscillator might be damaged under some conditions, please exercise in advance.
- 11) Some kind of solvent may damage plastic package or marking ink; please take precautions when choosing solvent.
- 12) We recommend to use and store under room temperature and normal humidity to secure frequency accuracy and prevent moisture.
- 13) When don't intend to use OE pin, please connect the pin to VDD.We recommend to install a resistor in between to mitigate effect by surge etc.

[11] Recommendable patterning


The soldering pad sample indicated as like following:

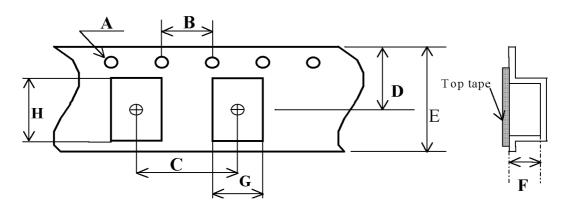
1) Soldering position (Unit : mm)

2) Glue position

Adhesive is recommended to be put on below position to avoid ejector pin dent.

TAPING SPECIFICATION

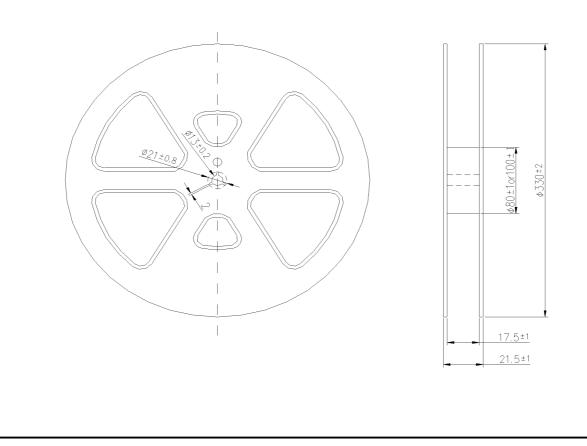
I. Application


This standard will apply to SOJ 4 pin package. Spec : JC package

${\rm I\hspace{-1.5mm}I}$. Contents

Item No.	Item	Page
[1]	Taping specification	1 to 2
[2]	Inner carton	3
[3]	Shipping carton	
[4]	Marking	4
[5]	Quantity	
[6]	Storage environment	
[7]	Handling	

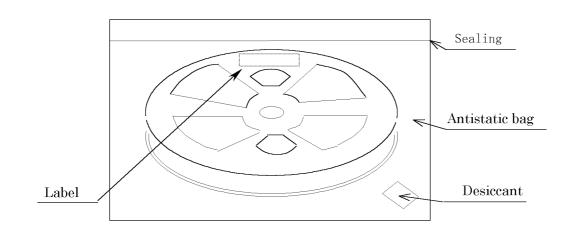
[1] Taping specificationSubject to EIA-481& EIAJ EDX-7602, IEC 60286, JIS C-0806


(1) Tape dimensions TE-1608L Material of the carrier tape : P S Material of the top tape : PET

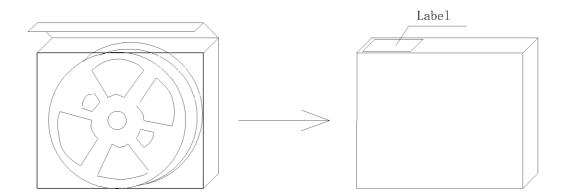
Symbol	А	В	С	D	Е	F	G	Н
Value	φ 1.5 +0.1/-0	4.0 ± 0.1	8.0 ± 0.1	9.25 ± 0.1	16.0 ± 0.3	3.0 ± 0.1	6.3 ± 0.1	10.8 ± 0.1

Unit : mm

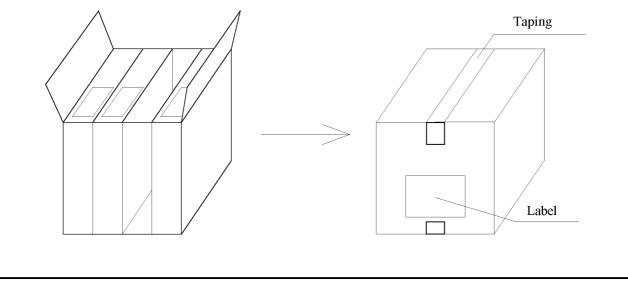
(2) Reel dimensions Material of the reel : Conductive polystyrene


Iter	Empty space			
Tape leader	Top tape	Min. 1 000 mm		
	Carrier tape	Min. 10 pockets		
Tape trailer	Top tape	Min. 0 mm		
Carrier tape		Min. 10 pockets		

Start


Top tape

[2] Inner carton


a) Packing to antistatic bag

b) Packing to inner carton

[3] Shipping carton

[4] Marking

- (1) Reel marking
 - Reel marking shall consist of :
 - 1) Parts name
 - 2) Quantity
 - 3) Manufacturing date or symbol
 - 4) Manufacturer's date or symbol
 - 5) Others (if necessary)
- (2) Inner carton marking
 - Same as reel marking.
- (3) Shipping carton marking
 - Shipping carton marking shall consist of :
 - 1) Parts name
 - 2) Quantity

[5] Quantity

• 1 000 pcs./reel

[6] Storage environment

- (1) To storage the reel at 15 °C to 35 °C, 25 %RH to 85 %RH of humidity.
- (2) To open the packing just before using.
- (3) Not to expose the sun.
- (4) Not to storage with some erosive chemicals.
- (5) Nothing is allowed to put on the reel or carton to prevent mechanical damage.

[7] Handling

• To handle with care to prevent the damage of tape, reel and products.

PROCESS QUALITY CONTROL

NO. 636-00-AME-1

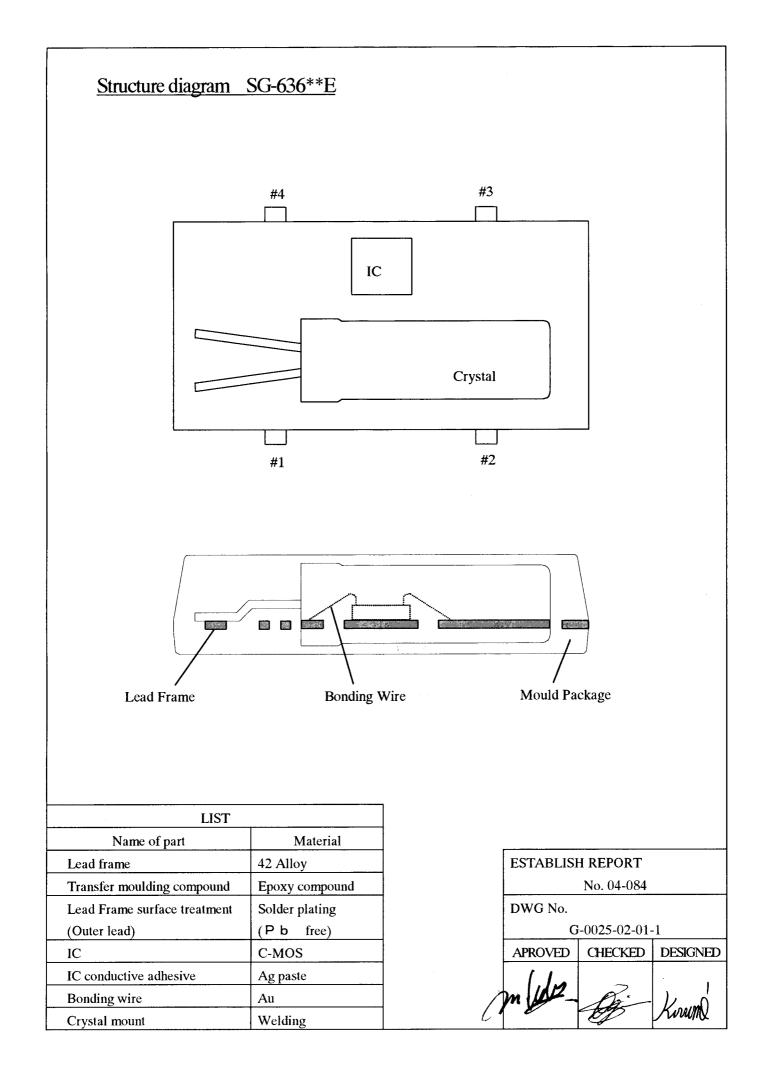
CRYSTAL OSCILLATOR SG-636PTF/*CE/PDE/PCV Series

'05.10.13 EPSON TOYOCOM CORP. AT(Consumer) Business Unit

S made to Lund

Manufacturing process chart	No.	Section In Charge	Standards	Inspection, Control Item	Instruments	Inspection Methods	Record
IC, Lead frame	1	Inspection Section	Purchasing Specification Incoming Inspection Standard	Appearance Dimension	Microscope	Sampling	Data sheet
۲	2	Production Section	Manufacturing Instruction Sheet	Appearance	Microscope	Sampling	Data sheet
2 Die Attach	3	Production Section	Manufacturing Instruction Sheet	Bonding strength Appearance	Gauge Microscope	Sampling	Data sheet
Crystal 3 Wire Bonding	4	Production Section	Manufacturing Instruction Sheet	Appearance	Місговсоре	Sampling	Data sheet
Crystal Welding	5	Production Section	Manufacturing Instruction Sheet	Shape of bonded wire	X-ray radio graphic equipment	Sampling	Data sheet
5 Transfer Mouldin 6 Solder Plating	6	Subcontractor Company	Solder plating specification	Plating thickness	Fluorescent X-ray	Sampling	Data sheet
7 Marking	7	Production Section	Manufacturing Instruction Sheet	Appearance	Visual inspection	Sampling	Data sheet
8 Press	8	Production Section	Manufacturing Instruction Sheet	Appearance	Microscope	Sampling	Data sheet
9 Finished Products Inspection	9	Production Section	Manufacturing Instruction Sheet	Electrical characteristics Appearance Master check	Measuring equipment Visual inspection	100% inspection or Sampling One/Day	Data sheet
10 Outgoing Inspection (11) Taping	10	Inspection Section	Delivery Specification Outgoing inspection standard	Electrical characteristics Appearance Master check	Measuring equipment Visual inspection	Sampling One/Day	Data sheet
12 Packing	11	Production Section	Manufacturing Instruction Sheet	Tape peeling force Frequency check function	Peeling force test machine	Sampling One/Day	Data sheet
	12	Production Control Section	Manufacturing Instruction Sheet Daily Shipping List	Customers Type Quantity			Delivery Slip

PROCESS QUALITY CONTROL


NO. 636-00-AEE-1

CRYSTAL OSCILLATOR SG-636PTF/*CE/PDE/PCV Series

'05.10.13 EPSON TOYOCOM CORP. AT(Consumer) Business Unit

Streda Ogo Zuni

							- um
Manufacturing process chart	No.	Section In Charge	Standards	Inspection, Control Item	Instruments	Inspection Methods	Record
IC, Lead frame	1	Inspection Section	Purchasing Specification Incoming Inspection Standard	Appearance Dimension	Microscope	Sampling	Data sheet
Y]	2	Malaysia Plant	Manufacturing Instruction Sheet	Appearance	Microscope	Sampling	Data sheet
2 Die Attach	3	Malaysia Plant	Manufacturing Instruction Sheet	Bonding strength Appearance	Gauge Microscope	Sampling	Data sheet
Crystal 3 Wire Bonding	4	Malaysia Plant	Manufacturing Instruction Sheet	Appearance	Microscope	Sampling	Data sheet
4 Crystal Welding 5 Transfer Mouldin 6 Solder Plating 7 Marking	5	Malaysia Plant	Manufacturing Instruction Sheet	Shape of bonded wire	X-ray radio graphic equipment	Sampling	Data sheet
	6	Subcontractor Company	Solder plating specification	Plating thickness	Fluorescent X-ray	Sampling	Data sheet
	7	Malaysia Plant	Manufacturing Instruction Sheet	Appearance	Visual inspection	Sampling	Data sheet
8 Press	8	Malaysia Plant	Manufacturing Instruction Sheet	Appearance	Microscope	Sampling	Data sheet
 Finished Products Inspection Outgoing Inspection Taping Packing 	9	Malaysia Plant	Manufacturing Instruction Sheet	Electrical characteristics Appearance Master check	Measuring equipment Visual inspection	100% inspection or Sampling One/Day	Data sheet
	10	Malaysia Plant	Delivery Specification Outgoing inspection standard	Electrical characteristics Appearance Master check	Measuring equipment Visual inspection	Sampling One/Day	Data sheet
	11	Malaysia Plant	Manufacturing Instruction Shoot	Tape peeling force Frequency check function	Peeling force test machine	Sampling One/Day	Data sheet
	12	Malaysia Plant	Manufacturing Instruction Sheet Daily Shipping List	Customers Type Quantity			Delivery Slip

EPSON TOYOCOM

RELIABILITY TEST DATA **Product Name : SG-636**E series**

The Company evaluation condition

We evaluate environmental and mechanical characteristics by the following test condition . No. F-G002501-01-001E

VALUE *1							
ITEM	TEST CONDITIONS	$\Delta f/f *2$	Electrical characteristics	Qty [n]	Qty [n]		
High temperature storage	+100 °C × 1 000 h	*3 ± 80		22	0		
Low temperature storage	-55 °C × 1 000 h	*3 ± 10		22	0		
High temperature bias	+70 °C × Spec bias × 1 000 h		22	0			
Low temperature bias	-20 °C × Spec bias × 1 000 h	*3 ± 10		22	0		
Temperature humidity bias	+85 °C × 85 %RH × Spec bias × 1 000 h	Satisfy specification	22	0			
Temperature cycle	$\begin{array}{c} -55 \ ^{\circ}\mathrm{C} \Leftrightarrow +100 \ ^{\circ}\mathrm{C} \\ 30 \ \mathrm{min} \ \mathrm{at} \ \mathrm{each} \ \mathrm{temp.} \ 100 \ \mathrm{cycles} \end{array}$	*3 ± 20	after test	22	0		
Resistance to soldering heat (Reflow characteristics)	Reflow furnace with the condition 2 times	± 10		22	0		
Drop	Free drop from 750 mm height on a hard wooden board for 3 times (Board is thickness more than 30 mm)	board for 3 times ± 20		22	0		
Vibration	10 Hz to 55 Hz amplitude 0.75 mm 55 Hz to 500 Hz acceleration 98 m/s ² 10 Hz \rightarrow 500 Hz \rightarrow 10 Hz 15 min / cycle 6 h (2 h × 3 directions)	± 10		22	0		
Pull - off	10 N press for 10 s ± 1 s Ref. EIAJ ED-4702	No peeling - off at a solder part		11	0		
Solderability	Dip termination into solder bath at $+235 \ ^{\circ}C \pm 5 \ ^{\circ}C$ for 5 s (Using Rosin Flux)Termination must be 95 % covered with fresh solder			11	0		
Solvent resistance	Ref. JIS C 0052 or IEC 60068-2-45The marking shall be legible			11	0		
	ITEM High temperature storage Low temperature storage High temperature bias Low temperature bias Temperature cycle Temperature cycle Resistance to soldering heat (Reflow characteristics) Drop Drop Pull - off Solderability	ITEMTEST CONDITIONSHigh temperature storage $+100 ^{\circ}\mathbb{C} \times 1000 ^{\circ}\mathbb{h}$ Low temperature storage $-55 ^{\circ}\mathbb{C} \times 1000 ^{\circ}\mathbb{h}$ High temperature bias $+70 ^{\circ}\mathbb{C} \times \text{Spec bias} \times 1000 ^{\circ}\mathbb{h}$ Low temperature bias $+70 ^{\circ}\mathbb{C} \times \text{Spec bias} \times 1000 ^{\circ}\mathbb{h}$ Low temperature bias $-20 ^{\circ}\mathbb{C} \times \text{Spec bias} \times 1000 ^{\circ}\mathbb{h}$ Temperature humidity bias $+85 ^{\circ}\mathbb{C} \times 85 ^{\circ}\mathbb{R}\text{H} \times \text{Spec bias} \times 1000 ^{\circ}\mathbb{h}$ Temperature cycle $-55 ^{\circ}\mathbb{C} \Leftrightarrow +100 ^{\circ}\mathbb{C}$ $30 ^{\circ}\mathbb{n}\mathbb{h}$ at each temp. 100 cyclesResistance to soldering heat (Reflow characteristics)Reflow furnace with the condition 2 times (Board is thickness more than 30 mm)Drop $Free drop from 750 ^{\circ}\mathbb{h}\mathbb{h}$ a bard wooden board for 3 times (Board is thickness more than 30 mm)Vibration $10 ^{\circ}\mathbb{H}z \to 500 ^{\circ}\mathbb{H}z \to 10 ^{\circ}\mathbb{H}z$ $10 ^{\circ}\mathbb{H}z \to 500 ^{\circ}\mathbb{H}z \to 10 ^{\circ}\mathbb{H}z$ $10 ^{\circ}\mathbb{H}z \to 500 ^{\circ}\mathbb{H}z \to 10 ^{\circ}\mathbb{H}z$ $10 ^{\circ}\mathbb{H}z \to 500 ^{\circ}\mathbb{H}z \to 10 ^{\circ}\mathbb{H}z$ Pull - off $10 ^{\circ}\mathbb{N}$ press for $10 ^{\circ}\mathbb{h}z = 1 ^{\circ}\mathbb{h}$ $\mathbb{H}z : 5 ^{\circ}\mathbb{C}$ for $5 ^{\circ}\mathbb{H}z$ (Using Rosin Flux)SolderabilityDip termination into solder bath at $\pm 235 ^{\circ}\mathbb{C} \pm 5 ^{\circ}\mathbb{C}$ for $5 ^{\circ}\mathbb{H}z$ $\mathbb{H}z : 5 ^{\circ}\mathbb{H}z$	ITEMTEST CONDITIONSVAI $\Delta f/f * 2$ $[1 \times 10^6]$ High temperature storage $\pm 100 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ITEMTEST CONDITIONSVALUE *1 $\Delta f/f * 2$ $[1 \times 10^{6}]$ Electrical characteristicsHigh temperature storage $+100 \ \mbox{C} \times 1000 \ \mbox{h}$ *3 ± 80 ± 80 Low temperature storage $-55 \ \mbox{C} \times 1000 \ \mbox{h}$ *3 ± 10 ± 10 High temperature bias $+70 \ \mbox{C} \times \text{Spec bias} \times 1000 \ \mbox{h}$ *3 ± 10 Low temperature bias $+70 \ \mbox{C} \times \text{Spec bias} \times 1000 \ \mbox{h}$ *3 ± 10 Low temperature bias $-20 \ \mbox{C} \times \text{Spec bias} \times 1000 \ \mbox{h}$ *3 ± 20 Low temperature bias $-20 \ \mbox{C} \times \text{Spec bias} \times 1000 \ \mbox{h}$ *3 ± 20 Temperature humidity bias $+85 \ \mbox{C} \times 85 \ \mbox{MH} \times \text{Spec bias} \times 1000 \ \mbox{h}$ *3 ± 20 Temperature cycle $-55 \ \mbox{C} \leftrightarrow +100 \ \mbox{C}$ $30 \ \mbox{min at each temp. 100 cycles}$ *3 ± 20 Resistance to soldering heat (Reflow characteristics)Reflow furnace with the condition 2 times (Board is thickness more than 30 mm) ± 10 Vibration10 Hz to 55 Hz amplitude 0.75 mm 55 Hz to 500 Hz acceleration 98 ms^2 $10 \ \text{Hz} = 500 \ \text{Hz} = 10 \ \text{Hz} = 100$ ± 100 Vibration10 N press for 10 s $\pm 1 \ \text{s}$ Ref. EIAJ ED-4702 ± 10 Pull - off10 N press for 10 s $\pm 1 \ \text{s}$ Ref. EIAJ ED-4702No peeling - off at a solder partSolderabilityDip termination into solder bath at 	ITEMTEST CONDITIONSVALUE *1 $Af/f *2$ $[1 \times 10^{6}]$ TEST Cherical characteristicsTEST Qty [n]High temperature storage $+100 ^{\circ}\text{C} \times 1000\text{h}$ *3 ± 80 22Low temperature bias $-55 ^{\circ}\text{C} \times 1000\text{h}$ *3 ± 10 22Low temperature bias $+70 ^{\circ}\text{C} \times \text{Spec bias} \times 1000\text{h}$ *3 ± 10 22Low temperature bias $-20 ^{\circ}\text{C} \times \text{Spec bias} \times 1000\text{h}$ *3 ± 10 22Low temperature bias $-20 ^{\circ}\text{C} \times \text{Spec bias} \times 1000\text{h}$ *3 ± 10 22Low temperature bias $-20 ^{\circ}\text{C} \times \text{Spec bias} \times 1000\text{h}$ *3 ± 10 22Low temperature bias $-20 ^{\circ}\text{C} \times \text{Spec bias} \times 1000\text{h}$ *3 ± 10 22Low temperature bias $-20 ^{\circ}\text{C} \times \text{Spec bias} \times 1000\text{h}$ *3 ± 10 22Temperature cycle $-55 ^{\circ}\text{C} \leftrightarrow +100 ^{\circ}\text{C}$ $30 ^{\circ}\text{min}$ at each temp. 100 cycles*3 ± 20 22Resistance to soldering heat (Reflow furnace with the condition 2 times (Board is thickness more than 30 mm) ± 10 22DropFree drop from 750 mm height on a hard wooden board for 3 times (0 Hz $\rightarrow 50 \text{Hz} \rightarrow 10 \text{Hz} \rightarrow 15 \text{min} / \text{cycle}$ ± 10 22Pull - off10 N press for 10 s $\pm 1 \text{s}$ Ref. EIAJ ED-4702No peeling - off at a solder part11SolderabilityDip termination into solder bath at $+235 ^{\circ}\text{C} \pm 5 ^{\circ}\text{C}$ for 5 s (Using Rosin Flux)Termination must be 95 % covered with fresh solder11		

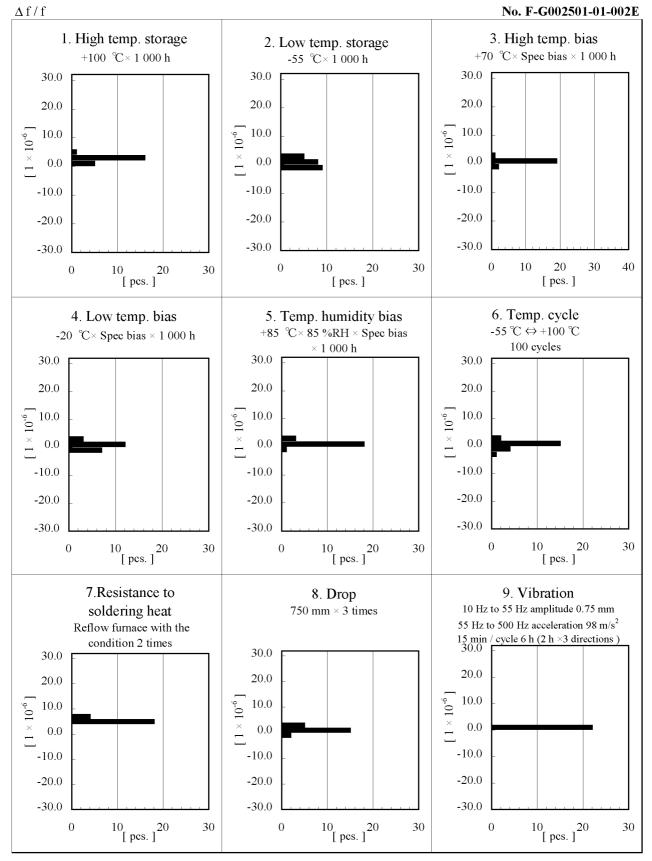
Notes

1. *1 Each test done independently.

2. *2 Measuring 2 h to 24 h later leaving in room temperature after each test.

3. *3 Pre conditionings

1. +125 °C × 24 h to +85 °C × 85 % × 48 h \rightarrow reflow 2 times


2. Initial value shall be after 24 h at room temperature.

AT (Consumer) Business Unit Production Management Div.

milolia

EPSON TOYOCOM

Product Name : SG-636E series**

Qualification Data