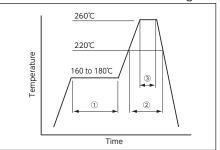


Handling Instructions

■ Soldering


Our products are designed so they may withstand the same standard reflow soldering temperatures as most other electronics components. However, if the reflow temperature is higher than our specification allows, the performance may be affected. Avoid soldering the product at temperatures higher than specified.

For the reflow temperature profile of SMD products, refer to the figure below.

1	Preheat	160 to 180℃	120sec.
2	Primary heat	220℃	60sec
3	Peak	260℃	10sec. max.

* The reflow temperature profile may vary depending on the product model, specifications and frequency range. Refer to the individual product specifications for details.

Reflow Temperature Profile (Available for lead free soldering)

■ Cleaning

General cleaning solutions or ultrasonic cleaning may be used to clean our crystal products, but verification tests are recommended prior to use. Tuning fork crystals resonate at frequency bands that are close to the washing frequency of ultrasonic cleaning machines and this may cause resonance deterioration in the crystal. Therefore the use of ultrasonic cleaning machines to clean tuning fork crystals should be avoi-ded. After applying ultrasonic cleaning, the functionality of crystals should be verified by testing the performance of the end product.

■ Shock

Crystal products are designed to resist shock, but if the products receive excessive shocks or are dropped on the ground, be sure to check for any damages before using.

■ Mounting

(SMD crystal products)

Surface mount crystals are designed to be compatible with most automatic mounting processes, but some processes may exert excessive shock which may damage the crystal. Therefore test mounting of the crystal prior to mass production is necessary. If there is a possibility that PCB may be warped, make sure the warping is not to such a degree that the crystal products' operating characteristics or soldering conditions will be negatively affected.

Avoid mounting and processing by Ultrasonic welding because this method has a possibility of an excessive vibration spreading inside the crystal products and becoming the cause of characteristic deterioration and not oscillating.

(Lead type)

When bending, forming, or mounting leaded crystal products be careful not to put too much pressure on the glassed part of the base, as it may crack and negatively affect the crystals' performance.

■ Storage

Storing crystal products at high temperatures or high humidity may deteriorate the soldering condition of pins. Do not store in direct sunlight or damp environments.

Others

(Crystal Resonators)

- ○When excessive voltage is applied to crystal resonators, their performance may be affected or the crystal blank may be damaged. When handling the product, use the product within the specifications provided.
- Negative resistance determines the tolerance margin of a circuit that oscillates the resonator. We recommend that the negative resistance be at least five times the standard series resistance for standard applications.

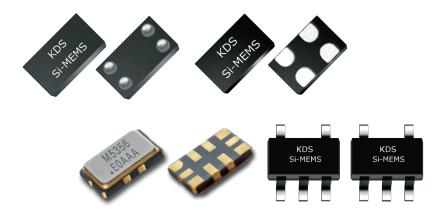
(Crystal Oscillators)

- ©C-MOS is used for internal circuit of crystal oscillators. To prevent latch-up phenomena or static electricity, take careful note.
- Some crystal oscillators do not have internally connected bypass capacitors. When using the product, use a capacitor with a good high frequency characteristic of 0.01μ F between Vcc and GND (e.g. Ceramic chip capacitor) and connect it at the shortest possible distance. For details, refer to the specifications of each individual product.

(Monolithic Crystal Filters)

- Take care so that the input pin and the output pin do not close on the PCB.
- ⊚If the floating capacity of a PCB (on which a crystal filter is to be mounted) is too large, circuit tuning may be required to cancel out the excess floating capacity.
- When excessive voltage is applied to crystal filters, their performance may be affected or the crystal blank may be damaged. When handling the product, use at its input level equal to or less than -10dBm.

RoHS/ELV Compliant Lead-free and Halogen-free products from KDS.

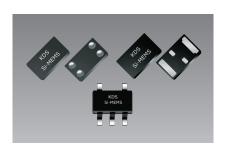

KDS is fully committed to environmental protection and has been proactively working to comply with the major environmental regulations such as RoHS Directive (Directive of the Restriction of the use of certain Hazardous Substances: 2011/65/EU and (EU) 2015/863), ELV Directive (End-of-Life Vehicles Directive: 2000/53/EC) and Halogen-free activities etc. The below spreadsheet provide the current status of the product compliance in each environmental regulations. Please visit our website for the latest information.(https://www.kds.info)

As of sept.30.2023

	Туре	RoHS/ELV Compliant	Halogen-free	Pb-free	Materials of pin	Note
Crystal Resonators/	DX1008J SERIES	0	0	0	Ni/Au	
MHz Band Crystal	DSX1210A	0	0	0	Ni/Au	
Resonators	DSX1612S	0	0	0	Ni/Au	
	DSX211S, DSX211SH	0	0	0	Ni/Au	
	DSX221SH	0	0	0	Ni/Au	
	DSX321SH	0	0	0	Ni/Au	
	DSX210GE	0	0	Pb in sealing-glass	Ni/Au	Pb in sealing-glass is exempted from RoHS/ELV Directive. (*)
	DSX320GE	0	0	Pb in sealing-glass	Ni/Au	Pb in sealing-glass is exempted from RoHS/ELV Directive. (*)
	DSX211G	0	0	Pb in sealing-glass	Ni/Au	Pb in sealing-glass is exempted from RoHS/ELV Directive. (*)
	DSX321G, DSX321GK	0	0	Pb in sealing-glass	Ni/Au	Pb in sealing-glass is exempted from RoHS/ELV Directive. (*)
	DSX530GA	0	0	Pb in sealing-glass	Ni/Au	Pb in sealing-glass is exempted from RoHS/ELV Directive. (*)
Tuning Fork Crystal	DT-26, DT-261	0	0	0	Sn	
Resonators/	DT-38, DT-381	0	0	0	Sn	
kHz Band Crystal Resonators	DMX-26S	0	0	High temperature solder	Sn	High temperature solder used inside the product is exempted from RoHS/ELV Directive. (4)
	DST1210A	0	0	0	Ni/Au	
	DST1610A	0	0	0	Ni/Au	
	DST210AC	0	0	0	Ni/Au	
	DST310S	0	0	0	Ni/Au	
Crystal Resonators	DSR1210ATH	0	0	0	Ni/Au	
with dedicated	DSR1612ATH	0	0	0	Ni/Au	
temperature sensor/ MHz Band Crystal	DSR211STH	0	0	0	Ni/Au	
Resonators	DSR221STH	0	0	0	Ni/Au	
Temperature	DSA/DSB1612 SERIES			0	Ni/Au	
Compensated Crystal		0	0	0	Ni/Au	
Oscillators	DSA/DSB211 SERIES		0	0	Ni/Au	
(TCXO)	DSA/DSB321 SERIES	0	0	0	Ni/Au	
	DSA/DSB521 SERIES DSA/DSB535 SERIES	0	0	0	Ni/Au	
	DSK1612ATD		0	0	Ni/Au	
	DSK321STD	0	0	0	Ni/Au	
Real Time Clock Module (RTC)	DD3225TS, DD3225TR	0	0	0	Ni/Au	
Simple Packaged	DS1008J SERIES	0	0	0	Ni/Au	
Crystal Oscillators	DSO1612AR	0	0	0	Ni/Au	
(SPXO)	DSO211S SERIES	0	0	0	Ni/Au	
	DSO221S SERIES	0	0	0	Ni/Au	
	DSO223S SERIES	0	0	0	Ni/Au	
	DSO321S SERIES	0	0	0	Ni/Au	
	DSO323S SERIES	0	0	0	Ni/Au	
	DSO531S SERIES	0	0	0	Ni/Au	
	DSO533 SERIES	0	0	0	Ni/Au	
	DLO555MBA	0	0	0	Sn	
	DSO751S SERIES	0	0	0	Ni/Au	
	DSO753S SERIES	0	0	0	Ni/Au	
Voltage Controlled Crystal Oscillators	DSV221SV	0	0	0	Ni/Au	
(VCXO)	DSV321S	0	0	0	Ni/Au	
Monolithic Crystal Filters	DSF334 SERIES	0	0	0	Ni/Au	
Filters	DSF444 SERIES	0	0	0	Ni/Au	
	DSF633 SERIES	0	0	0	Ni/Au	
	DSF753 SERIES	0	0	0	Ni/Au	

^{*} RoHS Directive and ELV Directive exemptions are granted for high temperature solder, lead content in low-melting glass of DSX-G Series.

Silicon Timing Devices MEMS oscillators



32 kHz MEMS Oscillators / 32 kHz TC-MO - µPower

MO1532/MO1552/MO1630/MO1566/MO1568

■Features

- Fixed 32.768 kHz
- Ultra-low power
- Internal filtering eliminates external Vdd bypass cap

■ Applications

- Mobile Phones, Tablets
- Health and wellness monitors, Fitness Watches
- Pulse-per- second timekeeping, RTC reference clock
- Battery Management Timekeeping

RoHS Compliant

Model	Output Frequency (kHz)	Frequency Tolerance (×10 ⁻⁶)	Supply Voltage (V)	Current Consumption (µA Typ.)	Size (mm)	Output	
MO1532		±10 room; 75, 100 over temp.	+1.2 to +3.63	+0.90	1 E × 0 9 × 0 6 (CCD)	NanoDrive™ LVCMOS	
MO1552 TC-MO	32.768	±5, ±10, ±20 over temp.	+1.5 to +3.63	+0.99	1.5×0.8×0.6 (CSP)		
MO1566 Super TC-MO	32./00	±3, 5 all inclusive	110	LAF	4 F.v. 0.v. 0.c. (CCD)	I) (CNAOC	
MO1568 Super TC-MO		±5 all inclusive After Overmold/Underfill	+1.8	+4.5	1.5×0.8×0.6 (CSP)	LVCMOS	
MO1630 -40 to +105℃	16.384, 32.768	±20 room; ±75,100,150 over temp.	+1.5 to +3.63	+1.00	2.0×1.2×0.6 (QFN) 2.9×2.8×1.3 (SOT23-5)	LVCMOS	

■ Standard Specification (MO1532)

Standard Specification (MO1332)									
Item	Legend	Min.	Тур.	Max.	Unit	Condition			
Output Frequency Range	Fout		32.768		kHz				
Supply Voltage	Vdd	+1.2	-	+3.63	V	$T_A = -10^{\circ} \text{C}$ to $+70^{\circ} \text{C}$			
Supply vollage	Vuu	+1.5	-	+3.63	v	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			
Operating Temperature Range	T_use	-10 to -	+70 / -40 to	o +85	$^{\circ}$				
		-	-	+75		$T_A = -10^{\circ}$ to +70°C, Vdd: +1.5V to +3.63V			
Frequency Stability [1]	F_stab	_	-	+100	×10 ⁻⁶	$T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ Vdd: } +1.5\text{V to } +3.63\text{V}$			
		-	-	+250		$T_A = -10^{\circ} \text{C to } +70^{\circ} \text{C}, \text{ Vdd: } +1.2 \text{V to } +1.5 \text{V}$			
		_	-	+10		$T_A = +25^{\circ}$ C, post reflow, Vdd: +1.5V to +3.63V			
Frequency Tolerance [2]	F_tol	_	-	+20	×10 ⁻⁶	$T_A = +25^{\circ}$ C, post reflow with board-level underfill, Vdd: +1.5V to +3.63V			
First Year Aging	F_aging1	-1.0	-	+1.0	×10 ⁻⁶	T _A = +25℃			
	Idd	-	+0.9	-		T _A = +25℃, Vdd: +1.8V. No load			
Core Operating Current [3]		-	-	+1.3	μΑ	$T_A = -10^{\circ}$ C to $+70^{\circ}$ C, Vdd max: $+3.63$ V. No load			
		-	-	+1.4		$T_A = -40^{\circ}$ to $+85^{\circ}$, Vdd max: $+3.63$ V. No load			
Start-up Time [4]	T start	_	180	300	ms	$T_A = -40^{\circ}C \le T_A \le +50^{\circ}C$, valid output			
Start-up Time [4]	i_stait	-	-	450	1115	$T_A = +50^{\circ} C < T_A \le +85^{\circ} C$, valid output			
	LV	CMOS Outp	ut Option, 1	TA = -40°C to	+85℃, typ	ical values are at T _A = +25℃			
Duty Cycle	DC	48	-	52	%				
Output Low Voltage	V _{OL}	-	-	Vdd×0.1	V	Vdd: +1.5V to +3.63V, I_{OL} = +10 μ A, 15 pF			
Output High Voltage	V _{OH}	Vdd×0.9	-	-	V	Vdd: +1.5V to +3.63V, $I_{OH} = -10 \mu A$, 15 pF			
Rise and Fall Time	Tr. Tf	_	100	200	ns	10 to 90% (Vdd), 15 pF load, Vdd = +1.5V to +3.63V			
Rise and Fall Time	11, 11	_	-	50	115	10 to 90% (Vdd), 5 pF load, Vdd ≥ +1.62V			
Packing Unit				1000pcs./r	eel (ϕ 180)	or 3000pcs./reel (φ180)			

^{[1].} Measured peak-to-peak. Inclusive of Initial Tolerance at +25°C, and variations over operating temperature, rated power supply voltage and

load. Stability is specified for two operating voltage ranges. Stability progressively degrades with supply voltage below +1.5V.

[2]. Measured peak-to-peak. Tested with Keysight 53132A frequency counter. Due to the low operating frequency, the gate time must be ≥100 ms to ensure an accurate frequency measurement.

 ^{[3].} Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + (+0.065 μA/V)×(output voltage swing).
 [4]. Measured from the time Vdd reaches +1.5V.

MEMS Oscillators / TC-MO - μPower

MO1534/MO1569/MO1576/MO8021

■Features

- Ultra-low power
- Internal filtering eliminates external Vdd bypass cap

■ Applications

- Tablets, Wearable, Portable audio
- Health and wellness monitors, Fitness bands
- IoT devices
- Input devices

RoHS Compliant

Model	Output Frequency (kHz)	Frequency Tolerance (×10 ⁻⁶)	Supply Voltage (V)	Current Consumption (µA Typ.)	Size (mm)	Output	
MO1534	1 Hz to 32.768 kHz	±20 room; ±75,100,150 over temp	+1.2 to +3.63	+0.90	1.5×0.8×0.6 (CSP) 2.0×1.2×0.6 (QFN)	NanoDrive™ LVCMOS	
MO1569	1 Hz to 462kHz	±50		+2.0 (100 kHz)			
MO1576 Super TC-MO	1 Hz to 2 MHz	±5 all inclusive	+1.62 to +3.63	+8.0 (100 kHz)	1.5×0.8×0.6 (CSP)	LVCMOS	
MO8021	1 Hz to 26 MHz	±100	+1.62 to +1.98, +2.25 to +3.63	+6 to +340 (0.9 μA stby)			

■ Standard Specification (MO8021)

Item	Legend	Min.	Тур.	Max.	Unit	Condition
Output Frequency Range	f	1	-	26	MHz	
Operating Cumply Valtage	Vdd	+1.62	+1.8	+1.98	V	
Operating Supply Voltage	vaa	+2.25	-	+3.63	V	Any voltage from +2.25 to +3.63V
Operating Temperature	T	-20	-	+70	$^{\circ}$	Extended Commercial
Range	T_use	-40	-	+85	C	Industrial
Frequency Stability	F_tol	-15	-	+15	×10 ⁻⁶	Frequency offset at +25℃ post reflow
Frequency Tolerance	F_stab	-100	-	+100	×10 ⁻⁶	Inclusive of initial tolerance, and variations over operating temperature, rated power supply voltage and output load.
First Year Aging	F_aging1	-3.0	-	+3.0	×10 ⁻⁶	T _A = +25℃
		-	+60	-		f = 3.072 MHz, Vdd = +1.8V, no load
		-	+110	+130		f = 6.144 MHz, Vdd = +1.8V, no load
Current Consumption [1]	Idd	-	+230	+270	μΑ	f = 6.144 MHz, Vdd = +1.8V, 10 pF load
		-	+160	-		f = 12 MHz, Vdd = +1.8V, no load
		-	-	+160		f = 6.144 MHz, Vdd = +2.25V to +3.63V, no load
Standby Current	I_std	-	+0.7	+1.3	μΑ	Vdd = +1.8V, ST pin = HIGH, output is weakly pulled down
Standby Current		-	-	+1.5		Vdd = +2.25V to +3.63V, ST pin = HIGH, output is weakly pulleddown
Duty Cycle	DC	45	-	55	%	
Output Low Voltage	V _{OL}	-	-	Vdd×0.1	V	$I_{OL} = +0.5 \text{ mA}$
Output High Voltage	V _{OH}	Vdd×0.9	-	-	V	$I_{OH} = -0.5 \text{ mA}$
Rise and Fall Time	Tr, Tf	-	+4.0	+8.0	ns	20% to 80%
Input Low Voltage	V _{IL}	-	-	Vdd×0.2	V	
Input High Voltage	V _{IH}	Vdd×0.8	-	-	V	
Start-up Time	T_start	-	75	150	ms	Measured from the time Vdd reaches 90% of its final value
Standby Time	T_stdby	-	-	20	μs	Measured from the time ST pin crosses 50% threshold
Resume Time	T_resume	-	2.0	3.0	ms	Measured from the time ST pin crosses 50% threshold
RMS Period Jitter	Т ::++	-	75	110	nc	f = 6.144 MHz, Vdd = +1.8V
KIVIS PEHOU JILLEI	T_jitt	-	-	110	ps	f = 6.144 MHz, Vdd = +2.25V to +3.63V
			0.8	2.5		f = 6.144 MHz, Integration bandwidth = 100 Hz to 40 kHz
RMS Phase Jitter	T_phj	-	0.0	2.5	ns	Vdd = +1.8V, Note [2]
(random)	ı_pıı	_	_	2.5	115	$f = 6.144$ MHz, Integration bandwidth = 100 Hz \sim 40 kHz
		-		2.5		Vdd = +2.25V to +3.63V, Note [2]
Packing Unit				1000pcs./r	eel (<i>ф</i> 180)) or 3000pcs./reel (φ180)

 ^{[1].} Supply current with load is a function of the output frequency and output load.
 For any given output frequency, the capacitive loading will increase supply current equal to C_load × Vdd × f(MHz).

 [2]. Max spec inclusive of +25 mV peak-to-peak sinusoidal noise on Vdd. Noise frequency 100 Hz to 20 MHz.

MEMS Oscillators - Super Low Jitter

MO9365/MO9366/MO9367

■Features

- Industry-Standard packages: 3.2×2.5 mm, 5.0×3.2 mm, 7.0×5.0 mm
 Output signaling types: LVPECL, LVDS, HCSL
- Frequency tolerance as low as ±10×10⁻⁶
- 0.1 ps RMS phase jitter (random) for Ethernet applications

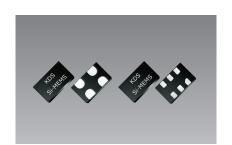
Applications

- 10/40GB Ethernet, SONET, SATA, SAS, Fibre Channel
- Telecom, networking, instrumentation, storage, servers

RoHS Compliant

Model	Output Frequency (MHz)	Frequency Tolerance (×10 ⁻⁶)	Supply Voltage (V)	Current Consumption (mA Typ.)	Size (mm)	Output
MO9365	32 Standard Frequencies				3.2×2.5×0.8, 5.0×3.2×0.8.	LVPECL
MO9366	1 to 220	± 10 , ± 20 , ± 25 , ± 50	+2.25 to +3.63	+76 to +84	7.0×5.0×1.0	LVDS HCSL
MO9367	220 to 725				(QFN)	

■ Standard Specification (MO9366)


Legend	Min.	Тур.	Max.	Unit	Condition
f	1	-	220	MHz	Accurate to 6 decimal places
	+2.25	+2.50	+2.75		·
الماما	+2.52	+2.80	+3.08	1 ,,	
vaa	+2.70	+3.00	+3.30	V	
	+2.97	+3.30	+3.63		
	-20	-	+70		Extended Commercial
_	-40	-	+85	·~	Industrial
ı_use	-40	-	+95		
	-40	-	+105	1	Extended Industrial
	-10	-	+10		
E state	-20	-	+20	V 10-6	Inclusive of initial tolerance, and variations over operating temperature,
F_stab	-25	-	+25	×10°	rated power supply voltage and output load.
	-50	-	+50	1	
F_aging1	-	±1	-	×10 ⁻⁶	T _A = +25℃
DC	45	-	55	%	
I_oe	-	-	+58	mA	OE = Low
V _{IL}	-	-	Vdd×0.3	V	Pin 1, OE
V _{IH}	Vdd×0.7		-	V	Pin 1, OE
T_start	-		3.0	ms	Measured from the time Vdd reaches its rated minimum value
T_oe	-		3.8	μs	f = 156.25 MHz
T_jitt	_	1	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 or 2.5 V
	'		LVPECL	output	
Idd	_	-	+89	mA	Excluding Load Termination Current, Vdd = +3.3V or +2.5V
V _{OL}	Vdd - 1.9	-	Vdd - 1.5	V	
V _{OH}	Vdd - 1.1	-	Vdd - 0.7	V	
V_Swing	1.2	1.6	2.0	V	
Tr, Tf	_	225	290	ps	20% to 80%
T_phj	-	0.225	0.275	ps	Note [2]
		<u>'</u>	LVDS o	utput	
Idd	_		+79	mA	Excluding Load Termination Current, Vdd = +3.3V or +2.5V
V _{OD}	+250	-	+450	mV	
∠V _{OD}	_	-	+50	mV	
Vos	+1.125	-	+1.375	V	
△Vos	-		+50	mV	
Tr, Tf	-	400	470	ps	Measured with 2 pF capacitive loading to GND, 20% to 80%
T_phj	-	0.235	0.275	ps	Note [2]
			HCSL o	utput	
Idd	_	-	+89	mA	Excluding Load Termination Current, Vdd = +3.3V or +2.5V
Vol	-0.05	-	+0.08	V	
	0.6	-	+0.9	V	
V_Swing	1.0	1.4	1.8	V	
					l
Tr, Tf	-	360	465	ps	Measured with 2 pF capacitive loading to GND, 20% to 80%
Tr, Tf T_phj	-	360 0.225	465 0.275	ps ps	Measured with 2 pF capacitive loading to GND, 20% to 80% Note [2]
	Legend f Vdd T_use F_stab F_aging1 DC I_oe V _{IL} V _{JH} T_start T_oe T_jitt Idd VoL V_Swing Tr, Tf T_phj Idd Vos △Vos △Vos △Vos CTr, Tf T_phj Idd Vol Vos AVos Vos AVos Vos Vos AVos Vos Vos AVos Vos Vos AVos Vos AVos	Legend Min. f 1 +2.25 +2.52 +2.70 +2.97 -20 -40 -40 -40 -40 -20 -20 -25 -50 -50 F_aging1 - DC 45 I_oe - V _{IL} - T_oe - T_jitt - Idd - V _{OL} Vdd - 1.9 V _{OH} Vdd - 1.1 V_Swing 1.2 Tr, Tf - T_phj - Idd - V _{OS} +1.125 AV _{OS} - AV _{OS} - Tr, Tf - T_phj -	Legend Min. Typ. f 1 - +2.25 +2.50 +2.52 +2.80 +2.70 +3.00 +2.97 +3.30 -20 - -40 - -40 - -40 - -40 - -21 - -225 - -30 </td <td>f 1</td> <td>Legend Min. Typ. Max. Unit f 1 - 220 MHz Vdd +2.25 +2.50 +2.75 +2.76</td>	f 1	Legend Min. Typ. Max. Unit f 1 - 220 MHz Vdd +2.25 +2.50 +2.75 +2.76

^{[1].} Measured according to JESD65B
[2]. 5.0×3.2 and 3.2×2.5 mm package, f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to +70°C

MEMS Oscillators - Low Jitter

MO9120/MO9121/MO9122/MO8208/MO8209

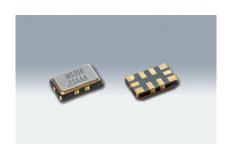
■Features

- Frequency tolerance as low as ±10×10⁻⁶
 Ultra-Low phase Jitter

- ApplicationsComputing, storage, networkingTelecom, industrial control
- SATA, SAS, Ethernet, PCI Express, video, WiFi

RoHS Compliant

Model	Output Frequency (MHz)	Frequency Tolerance (×10 ⁻⁶)	Supply Voltage (V)	Current Consumption (mA Typ.)	Size (mm)	Output
MO9120	25 to 212.5		+2.25 to +3.63		3.2×2.5×0.8.	I) (DECI
MO9121	1 to 220	±10, ±20, ±25, ±50		+54 to +69	$5.0 \times 3.2 \times 0.8$,	LVPECL LVDS
MO9122	220 to 625				7.0×5.0×1.0 (QFN)	LVDS
MO8208	1 to 80			+29 to +36 (+10 μA stby)	2.7×2.4×0.8, 3.2×2.5×0.8,	LVCMOS
MO8209	80 to 220				5.0×3.2×0.8, 7.0×5.0×1.0 (QFN)	


■ Standard Specification (MO9121)

ltem	Legend	Min.	Тур.	Max.	Unit	Condition
Output Frequency Range	f	1	_	220	MHz	Refer to datasheet for exact list of supported frequencies
		+2.97	+3.3	+3.63		
Supply Voltage	Vdd	+2.25	+2.5	+2.75	V	
		+2.25	-	+3.63		
Operating Temperature	T_use	-20	-	+70	$^{\circ}$	Extended Commercial
Range	1_use	-40	-	+85		Industrial
		-10	-	+10		
Eroguancy Talaranca	F stab	-20	-	+20	×10 ⁻⁶	Inclusive of initial tolerance, and variations over operating
Frequency Tolerance	r_stab	-25	_	+25	×10	temperature, rated power supply voltage and output load.
		-50	-	+50		
First Year Aging	F_aging1	-2.0	-	+2.0	×10 ⁻⁶	T _A = +25℃
10-year Aging	F_aging10	-5.0	-	+5.0	×10	T _A = +25℃
Duty Cycle	DC	45	-	55	%	
Input Low Voltage	V _{IL}	-	-	Vdd×0.3	V	Pin 1, OE or ST
Input High Voltage	V _{IH}	Vdd×0.7	-	_	V	Pin 1, OE or ST
Start-up Time	T_start	-	6.0	10	ms	Measured from the time Vdd reaches its rated minimum value.
Resume Time	T_resume	-	6.0	10	ms	In Standby mode, measured from the time ST pin crosses 50% threshold.
			LVPECI	, DC and A	C Charac	teristics
Current Consumption	Idd	_	+61	+69	mA	Excluding Load Termination Current, Vdd = +3.3V or +2.5V
OE Disable Supply Current	I oe	-	-	+35	mA	OE = Low
Standby Current	I std	-	_	+100	μА	ST = Low, for all Vdds
Output Low Voltage	V _{OL}	Vdd - 1.9	_	Vdd - 1.5	V	
Output High Voltage	V _{OH}	Vdd - 1.1	_	Vdd - 0.7	V	
Rise and Fall Time	Tr, Tf	-	300	700	ps	20% to 80%
Enable and Disable Time	T_oe	-	-	115	ns	f = 212.5 MHz - For other frequencies, T_oe = 100ns + 3 period
		-	1.2	1.7		f = 100 MHz, Vdd = +3.3V or +2.5V
RMS Period Jitter	T_jitt	-	1.2	1.7	ps	f = 156.25 MHz, Vdd = +3.3V or +2.5V
		_	1.2	1.7	1	f = 212.5 MHz, Vdd = +3.3V or +2.5V
RMS Phase Jitter (random)	T_phj	-	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds
, ,			LVDS,	DC and AC		
Current Consumption	Idd	-	+47	+55	mA	Excluding Load Termination Current, $Vdd = +3.3V$ or $+2.5V$
OE Disable Supply Current	I_oe	_	_	+35	mA	OE = Low
Standby Current	I std	-	-	+100	μΑ	\overline{ST} = Low, for all Vdds
Rise and Fall Time	Tr,Tf	-	495	700	ps	20% to 80%
Differential Output Voltage	V _{OD}	+250	+350	+450	mV	
V _{OD} Magnitude Change	∠V _{OD}	-	_	+50	mV	
Offset Voltage	Vos	+1.125	+1.2	+1.375	V	
V _{os} Magnitude Change	△V _{os}	-	-	+50	mV	
Enable and Disable Time	T_oe	_	_	115	ns	$f = 212.5 \text{ MHz}$ - For other frequencies, $T_oe = 100 \text{ns} + 3 \text{ period}$
		_	1.2	1.7		f = 100 MHz, Vdd = +3.3V or +2.5V
RMS Period Jitter	T_jitt	_	1.2	1.7	ps	f = 156.25 MHz, Vdd = +3.3V or +2.5V
	J	_	1.2	1.7	۲,	f = 212.5 MHz, Vdd = +3.3V or +2.5V
RMS Phase Jitter (random)	T_phj	_	0.6	0.85	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds
Packing Unit	1_211	I.				000pcs./reel (\$\phi\$180: 3225 package)
deking Offic			1000þ	υ ι ε ε ι (ψ ι	00) 01 30	σουρουν του (ψ του: 3223 ρασκαβο)

TC-MO / VC TC-MO - Super Low Jitter

MO5155/MO5156/MO5157/MO5356/MO5357/MO5358/MO5359

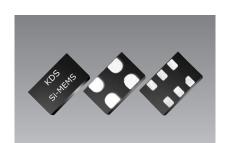
■Features

- 5.0×3.2 mm Ceramic packageLVCMOS or Clipped Sinewave output

- Applications
 Synchronous Ethernet
- Small cell
- Optical transport-SONET/SDH, OTN
- IEEE1588
- Test and measurement

RoHS Compliant

Model	Output Frequency (MHz)	Frequency Tolerance (×10 ⁻⁶)	Supply Voltage (V)	Current Consumption (mA Typ.)	Size (mm)	Output
MO5155	10 std. GNSS Freq.					
MO5156	1 to 60	± 0.5 , ± 1.0 , ± 2.5			5.0×3.2×0.95 (Ceramic)	Clipped Sinewave
MO5157	60 to 220		+2.25 to +3.63	+40 to +50		(1 to 60 MHz)
MO5356	1 to 60	±0.1, ±0.2, ±0.25				LVCMOS
MO5357	60 to 220	1 10.1, 10.2, 10.25				
MO5358	1.0 to 60	±0.05	+2.25 to +3.63			Clipped sinewave, LVCMOS
MO5359	60 to 189, 200 to 220	10.05	+2.25 to +3.63			LVCMOS


■ Standard Specification (MO5356)

Standard Specifical	tion (MO	5356)				
Item	Legend	Min.	Тур.	Max.	Unit	Condition
Output Frequency Range	f	1	-	60	MHz	
		+2.25	+2.50	+2.75		
Supply Voltage	Vdd	+2.52	+2.80	+3.08	V	
Supply Voltage	Vaa	+2.70	+3.00	+3.30] V	
		+2.97	+3.30	+3.63		
		-20	-	+70		Extended commercial
Operating Temperature Range	T_use	-40	-	+85	ີ ℃	Industrial
		-40	-	+105		Extended Industrial, ambient temperature
Initial Tolerance	F_init	-1.0	-	+1.0	×10 ⁻⁶	Inclusive of solder-down shift at 48 hours after 2 reflows at +25℃
		-0.10	-	+0.10		
Frequency Stability over temperature	F_stab	-0.20	-	+0.20	×10 ⁻⁶	Referenced to (fmas + fmin)/2 over the specified temperature range
temperature		-0.25	-	+0.25	1	temperature range
First Year Aging	F_aging1	-	±1.0	-	×10 ⁻⁶	T _A = +25℃
			±6.25		×10 ⁻⁶	VC TC-MO mode. Contact KDS for ±12.5, ±25
Pull Range	PR	±100, ±12	25, ±150, ±	5, ±50, ±80, 200, ±400, 1600, ±3200	×10 ⁻⁶	DC TC-MO mode.
Upper Control Voltage	VC_U	Vdd×0.9	-	-	V	
Control Voltage Range	VC_L	-	-	Vdd×0.1	V	
Control Voltage Input Impedance	VC_z	8	-	-	ΜΩ	
Control Voltage Input Bandwidth	VC_c	-	10	-	kHz	
Frequency Change Polarity	-	Р	Positive Slope		-	
Current Consumention	1-1-1	_	+44	+53	A	No load condition, f = 19.2 MHz, TC-MO and DC TC-MO mode.
Current Consumption	ldd	-	+48	+57	mA	No load condition, f = 19.2 MHz, VC TC-MO mode.
OF Disable Comment	11	-	+43	+51	4	OE = GND, output is weakly pull down, TC-MO and DC TC-MO mode.
OE Disable Current	l_od	-	+47	+55	mA	OE = GND, output is weakly pull down, VC TC-MO mode.
Input Low Voltage	V _{IL}	-	-	Vdd×0.3	V	For OE pin
Intput High Voltage	V _{IH}	Vdd×0.7	-	-	V	For OE pin
Start-up Time	T_start	-	2.5	3.5	ms	Time to first pulse, Measured from the time Vdd reaches its rated minimum value.
RMS Period Jitter	T_jitt	-	0.8	1.1	ps	f = 10 MHz
				LVCMOS	Output	
Duty Cycle	DC	45	-	55	%	
Output Low Voltage	V _{OL}	-	-	Vdd×0.1	V	IoL = -3mA
Output High Voltage	V _{OH}	Vdd×0.9	-	-	V	$I_{OH} = +3 \text{ mA}$
Rise and Fall Time	Tr, Tf	0.8	1.2	1.9	ns	10% to 90% Vdd.
RMS Phase Jitter (random)	T_phj	-	0.31	0.48	ps	$f = 50$ MHz, Integration bandwidth = 12 kHz to 20 MHz, -40 to +85 $^{\circ}$ C
				Clipped Sinev	wave Outpu	ıt
Output Voltage Level	Vout	+0.8	-	+1.2	%	10kΩ 10pF ± 10%
Rise and Fall Time	Tr, Tf	-	3.5	4.6	V	20% to 80% Vdd, 19.2MHz
RMS Phase Jitter (random)	T_phj	-	0.31	0.48	ps	f = 60 MHz, Integration bandwidth = 12 kHz to 20 MHz, -40 to +85 $^{\circ}$ C
Packing Unit					1000pc	cs./reel (ϕ 180)

MEMS Oscillators with Spread Spectrum Function (SSCG)

MO9002/MO9003/MO9005

■Features

Spread options
 Center Spread: ±0.5%, ±0.25%
 Down Spread: -1%, -0.5%

- Down Spread: −1%, −0.5%

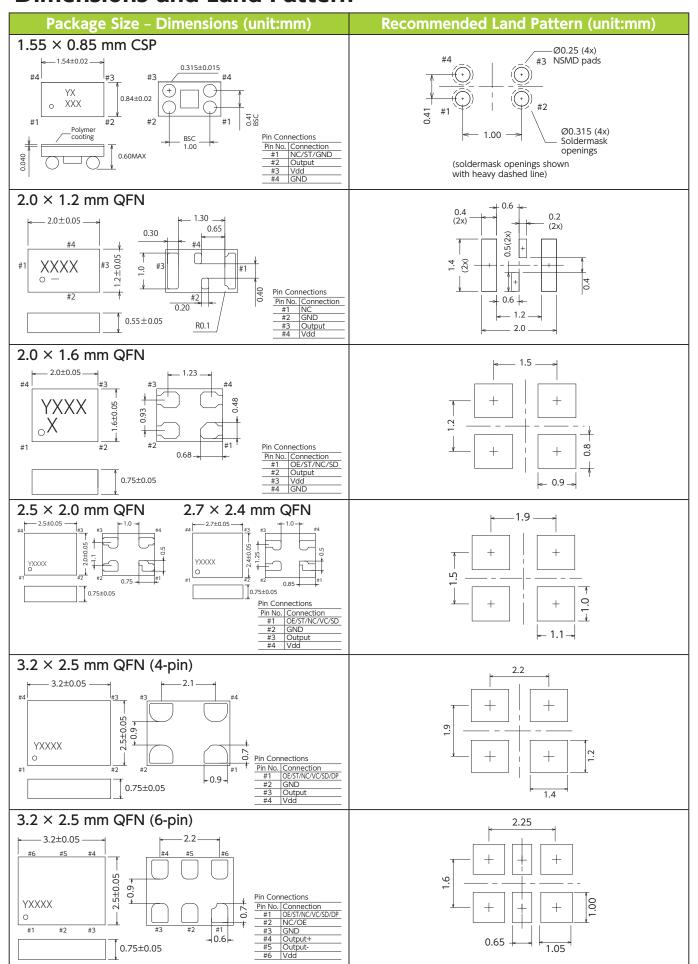
 Standby, output enable or spread disable mode
- <30 ps cycle-to-cycle jitter</p>

■ Applications

- Printers
- Flat panel drivers
- PCI
- Microprocessors

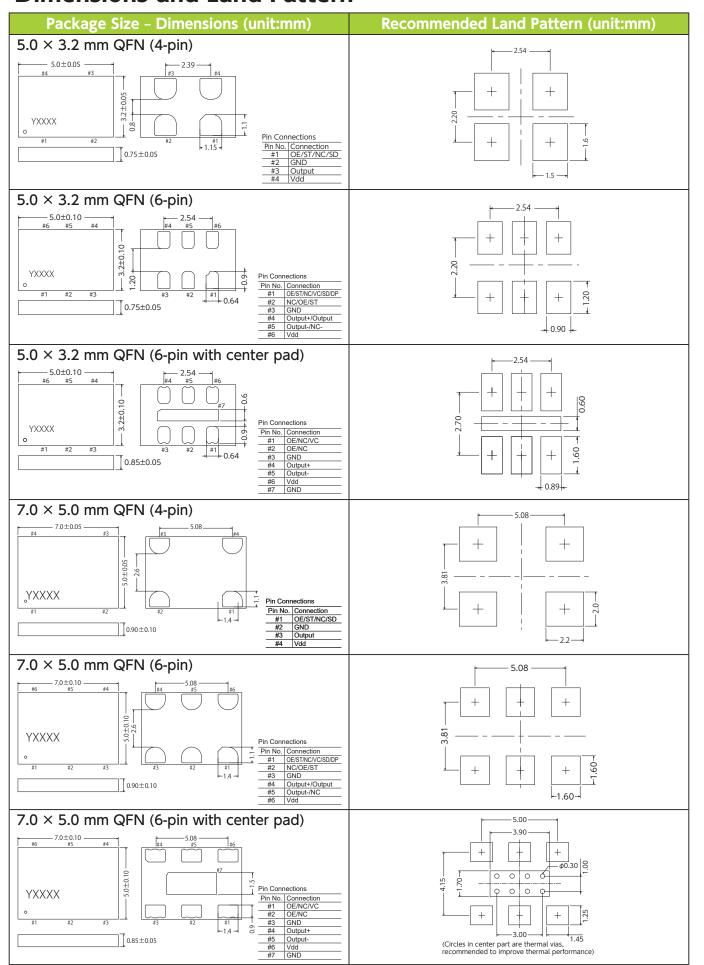
Pb-Fre

RoHS Compliant

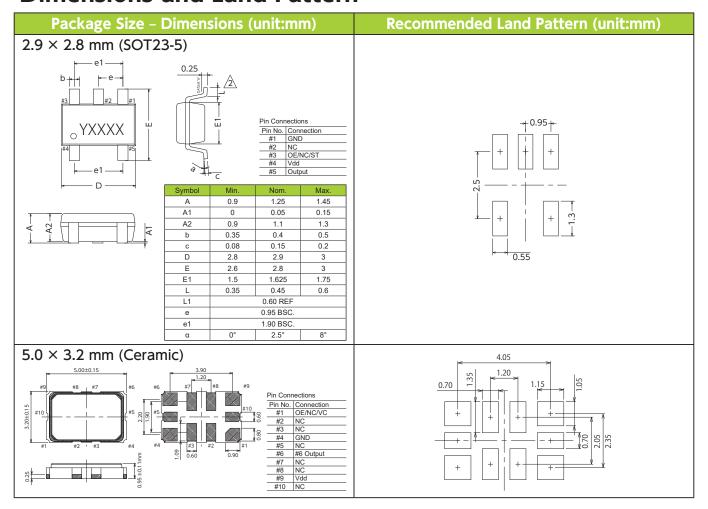

Model	Output Frequency (MHz)	Frequency Tolerance (×10 ⁻⁶)	Supply Voltage (V)	Current Consumption (mA Typ.)	Size (mm)	Output
MO9002	1 to 220	±25, ±50	+1.71 to +1.89,	+48 to +75	5.0×3.2×0.8, 7.0×5.0×1.0 (QFN)	LVPECL CML LVDS HCSL
MO9003	1 to 110	±50, ±100	+2.25 to +3.63	+3.2 to +4.1 (+0.4 to +4.3 μA stby)	2.5×2.0×0.8, 3.2×2.5×0.8, 5.0×3.2×0.8, 7.0×5.0×1.0 (QFN)	LVCMOS
MO9005	1 to 141	±20, ±25, ±50	+1.62 to +1.98, +2.25 to +3.63	5.0 to 6.5 (0.4 to4.3 μA stby)	2.0×1.6×0.8, 2.5×2.0×0.8, 3.2×2.5×0.8 (QFN)	

■ Standard Specification (MO9005)

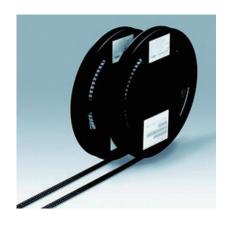
Item	Legend	Min.	Тур.	Max.	Unit	Condition			
Output Frequency Range	f	1	-	141	MHz				
		+1.62	+1.8	+1.98					
		+2.25	+2.5	+2.75	V				
		+2.52	+2.8	+3.08					
Supply Voltage	Vdd	+2.7	+3.0	+3.3					
		+2.97	+3.3	+3.63					
		+2.25	-	+3.63					
Operating Temperature	_	-20	-	+70	°C	Extended Commercial			
Range	T_use	-40	-	+85		Industrial			
		-20	-	+20					
Frequency Tolerance	F_tol	-25	-	+25	×10 ⁻⁶	Inclusive of initial tolerance at +25°C, 1st year aging at +25°C,			
.,,		-50	-	+50		and variations over operating temperature, rated power supply volta			
	ldd	-	+5.6	+6.5	_	No load condition, f = 40 MHz, Vdd = +2.5V to +3.3V			
Current Consumption		-	+5.0	+5.5	mA	No load condition, f = 40 MHz, Vdd = +1.8V			
Standby Current	I_std	-	+2.1	+4.3	_	$\overline{ST} = GND$, Vdd = +2.5V to +3.3V, Output is weakly pulled down			
		-	+0.4	+1.5	μΑ	\overline{ST} = GND, Vdd = +1.8V, Output is weakly pulled down			
	-	±0.125 to ±2.060				Center Spread			
Spread Spectrum			-4.28 to -0.25		%	Down Spread			
Duty Cycle	DC	45	-	55	%				
Output Low Voltage	V _{OL}	90%	-	-	Vdd	$\begin{array}{l} I_{\text{OH}} = -4 \text{ mA (Vdd} = +3.0 \text{V or } +3.3 \text{V)} \\ I_{\text{OH}} = -3 \text{ mA (Vdd} = +2.8 \text{V and Vdd} = +2.5 \text{V)} \\ I_{\text{OH}} = -2 \text{ mA (Vdd} = +1.8 \text{V)} \end{array}$			
Output High Voltage	V _{OH}	-	-	10%	Vdd	$I_{OL} = +4 \text{ mA (Vdd} = +3.0 \text{V or } +3.3 \text{V)}$ $I_{OL} = +3 \text{ mA (Vdd} = +2.8 \text{V and Vdd} = +2.5 \text{V)}$ $I_{OL} = +2 \text{ mA (Vdd} = +1.8 \text{V)}$			
	Tr, Tf	-	1	2		Vdd = +2.5V, +2.8V, +3.0V or +3.3V, 20% to 80%, default derive strength			
Rise and Fall Time		-	1.3	2.5	ns	Vdd = +1.8V, 20% to 80%, default derive strength			
		-	-	2.0		Vdd = +2.25V to +3.63V, 20% to 80%, default derive strength			
Input Low Voltage	V _{IL}	-	-	Vdd×0.3	V	Pin 1, OE or ST			
Input High Voltage	V _{IH}	Vdd×0.7	-	-	V	Pin 1, OE or ST			
OF Disable Comment	1	-	+5.0	+6.5	4	f = 40 MHz, $Vdd = +2.5V$ to $+3.3V$, $OE = GND$, Output in high-Z state			
OE Disable Current	I_oe	-	+4.6	+5.2	mA	f = 40 MHz, Vdd = +1.8V, OE = GND, Output in high-Z state			
Enable/Disable Time	T_oe	-	-	180	ns	f = 40 MHz - For other frequencies, T_oe = 100ns + 3 period			
Packing Unit					1000pc	s./reel(ϕ 180)			

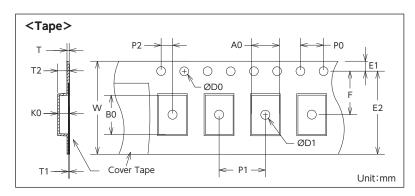


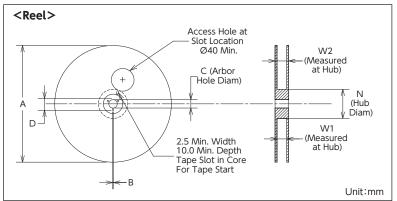
Dimensions and Land Pattern



Dimensions and Land Pattern



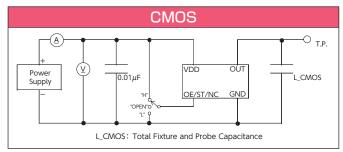

Dimensions and Land Pattern

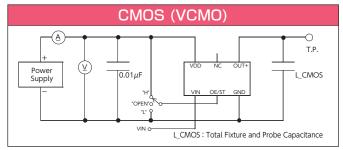


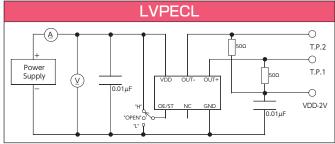
Emboss Carrier Tape (MEMS Oscillators)

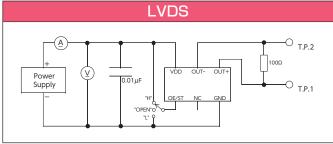
■ Reel Standard Specification

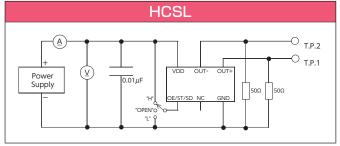
Tape Size	A Max.	B Min.	С	D Min.	N	W1	W2 Max.
8	180	1.5	13.0 +0.6/-0.2	20.2	60 +0.5/-0.5	8.4 +1.5/-0	14.4
8	330	1.5	13.0 +0.2/-0.2	20.2	100 +0.5/-0.5	8.4 +1.5/-0	14.4
12	330	1.5	13.0 +0.2/-0.2	20.2	100 +0.5/-0.5	12.4 +2.0/-0	18.4
12	180	1.5	13.0 +0.2/-0.2	20.2	60 +0.5/-0.5	12.4 +2.0/-0	18.4
16	330	1.5	13.0 +0.2/-0.2	20.2	100 +0.5/-0.5	16.4 +2.0/-0	22.4
16	180	1.5	13.0 +0.2/-0.2	20.2	60 +0.5/-0.5	16.4 +2.0/-0	22.4


■ Carrier Tape Standard Specification


Package Outline Drawing	Package Size	Tape Size	D0	D1 Min.	E1	E2 Min.	F	P0	P1	P2	т	T1 Max.	T2 Max.	W Max.	A0	во	ко
POD-1	2.5×2.0×0.75	12	1.5 +0.1/-0.0	1.5	1.75 ±0.1	10.25	5.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.6	0.1	1.65	12.3	2.3 ±0.10	2.8 ±0.10	1.10 ±0.10
POD-1	2.5×2.0×0.75	8	1.55 ±0.05	1.0	1.75 ±0.1	5.85	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.3 ±0.05	0.1	1.65	8.3	2.25 ±0.05	2.8 ±0.05	1.10 ±0.10
POD-23	2.7×2.4×0.75	12	1.55 ±0.05	1.0	1.75 ±0.1	9.85	5.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.3 ±0.05	0.1	1.55	12.3	2.65 ±0.10	2.95 ±0.10	1.00 ±0.10
POD-23	2.7×2.4×0.75	8	1.55 ±0.05	1.0	1.75 ±0.1	5.85	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.3 ±0.05	0.1	1.55	8.3	2.65 ±0.10	2.95 ±0.10	1.00 ±0.10
POD-2	3.2×2.5×0.75	12	1.5 +0.1/-0.0	1.5	1.75 ±0.1	10.25	5.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.6	0.1	1.65	12.3	2.8 ±0.10	3.5 ±0.10	1.10 ±0.10
POD-2	3.2×2.5×0.75	8	1.5 +0.1/-0.0	1.0	1.75 ±0.1	5.95	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.2 ±0.05	0.1	1.65	8.2	2.7 ±0.10	3.4 ±0.10	1.15 ±0.10
POD-3	5.0×3.2×0.75	12	1.5 +0.1/-0.0	1.5	1.75 ±0.1	10.25	5.5 ±0.05	4.0 ±0.1	8.0 ±0.1	2.0 ±0.05	0.6	0.1	1.65	12.3	3.5 ±0.10	5.3 ±0.10	1.10 ±0.10
POD-4	7.0×5.0×0.90	16	1.5 +0.1/-0.0	1.5	1.75 ±0.1	14.25	7.5 ±0.10	4.0 ±0.1	8.0 ±0.1	2.0 ±0.10	0.6	0.1	1.80	16.3	5.4 ±0.10	7.4 ±0.10	1.3 ±0.10
POD-9	3.5×3.0×0.30	12	1.5 +0.1/-0.0	1.5	1.75 ±0.1	10.25	5.5 ±0.05	4.0 ±0.1	8.0 ±0.1	2.0 ±0.05	0.6	0.1	1.65	12.3	3.3 ±0.10	3.8 ±0.10	0.65 ±0.10
POD-26	2.0×1.6×0.75	8	1.55 ±0.05	0.9	1.75 ±0.1	6.05	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.3 ±0.05	0.1	1.55	8.3	1.9 ±0.05	2.3 ±0.05	1.00 ±0.10
POD-29	2.0×1.2×0.60	8	1.55 ±0.05	1.0	1.75 ±0.1	6.05	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.25 ±0.05	0.1	1.55	8.3	1.9 ±0.05	2.3 ±0.05	1.00 ±0.10
POD-32	1.5×0.8×0.60	8	1.55 ±0.05	0.18	1.75 ±0.1	6.05	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.2 ±0.02	0.1	1.55	8.3	0.96 ±0.03	1.66 ±0.03	0.63 ±0.03
SOT-23	2.8×1.6×1.45	8	1.55 ±0.05	1.0	1.75 ±0.1	6.05	3.5 ±0.05	4.0 ±0.1	4.0 ±0.1	2.0 ±0.05	0.25 ±0.02	0.1	1.62	8.3	3.23 ±0.10	3.17 ±0.10	1.37 ±0.10


Refer to datasheet for details of emboss carrier tape specifications.




Measurement Circuit (MEMS Oscillators)

