POP_UP_MESSAGE_CONTENT
首先把 FET 探针放在石英晶体单元的 HOT 端子上(图2),示波器中显示波形、频率计显示频率。
例如,不考虑负载电容的石英晶体单元的振荡频率(Fr)为 12MHz 时,若其标准负载电容时的振荡频率(FL) 为 12.000034MHz,假设将该石英晶体单元安装在基板上后使用 FET 探针实际测试得出的振荡频率(FR)为 12.000219MHz,就可以得出两者(在基板上实装石英晶体单元后的振荡频率(FR )与标准负载电容时石英晶体 单元的振荡频率)之间的差为+185Hz,出现了+15.4ppm 的差异。
这个差越接近零,频率精度越高。
使上述 FR 和 FL 的差接近零的方法有两种。
第一种方法是从石英元件生产商处购买振荡频率(中心频率)比现在偏移+15.4ppm 的石英晶体单元。另一种方 法是对振荡电路的负载电容进行微调整,以此得到相应的振荡频率。
在下一项中将介绍对负载电容进行微调整的匹配方法。
【3】 对负载电容进行微调整来匹配频率的方法 计算负载电容时需要前述的数据。
·石英晶体单元等效电路常数(Fr、R1 、C1 、L1 、C0)
·实装在基板后的振荡频率(FR)
根据这些数据使用以下算式计算负载电容(CL)。
算式(1)
具体计算举例如下:
假设石英晶体单元的额定频率为 12MHz,振荡电路的负载电容(CL)为 7.8pF。 这里的额定频率指使用规定负载电容的振荡电路的条件下的振荡频率(FL)。
假定用网络分析仪对该石英晶体单元进行测试后得到了下列各常数:
FR=12.000219 MHz
Fr=11.998398 MHz
R1=33.7 ohm L1=70.519 mH C1=2.495 fF
C0=1.11 pF
这里重申 Fr 是石英晶体单元自身的振荡频率。把这些常数代入算式(1)就可以求出 CL=7.11pF。
从求出的值可以得出与先前所指定的振荡电路负载电容(CL)等于 7.8pF 之间的差为 0.69pF。只要把差调整到零, 事先所指定的振荡电路负载电容就与在印制基板上实装石英晶体单元时的电容相等。
因此,理论上频率公差也变为零,便可得到事先所指定的振荡频率。
实际调整振荡电路的负载电容时,将变更图 3 的 Cg 和 Cd ,以符合事先指定的标准电容。这时, Cg 和 Cd 的大致数值可以使用下列算式(2)计算得出。
这里的 Ci 表示振荡电路的实际负载电容(CL),Cs 则表示印制基板的导线图案和部品的寄生电容等。Ci 只要等于 事先指定的标准电容 CL(晶体单元单体电容 CL)即可,所以可以使用下列算式(3)和算式(4)算出。
Cg 和 Cd 是从规定的晶体单元单体负载电容减去 Cs 后的数值。计算得出的只是大致数值。实际调整 Cg 和 Cd 时建 议边确认振荡频率边进行频率匹配。
如果振荡电路的 Cg 和 Cd 难以变更,可以通过调整晶体单元的负载电容进行频率匹配。这种情况下可以让石英 晶体单元生产商把晶体单元电容调整为电路电容后购买,再对其进行匹配评估确认结果。但需要注意的是,电路 的负载电容与振荡频率变化量成反比。因此,当振荡电路的负载电容较小时,容易受到振荡电路微小的特性变化 的影响,导致频率稳定度恶化。所以,关键在于根据机器用途而设定适宜条件。